Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : 303-309, 2001.
Article in English | WPRIM | ID: wpr-144625

ABSTRACT

Both Fas and PMA can activate phospholipase D via activation of protein kinase Cbeta in A20 cells. Phospholipase D activity was increased 4 fold in the presence of Fas and 2.5 fold in the presence of PMA. The possible involvement of tyrosine phosphorylation in Fas-induced activation of phospholipase D was investigated. In five minute after Fas cross-linking, there was a prominent increase in tyrosine phosphorylated proteins, and it was completely inhibited by D609, a specific inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC). A tyrosine kinase inhibitor, genistein, can partially inhibit Fas-induced phospholipase D activation. There were no effects of genistein on Fas-induced activation of PC-PLC and protein kinase C. These results strongly indicate that tyrosine phosphorylation may in part account for the increase in phospholipase D activity by Fas cross-linking and D609 can block not only PC-PLC activity but also tyrosine phosphorylation involved in Fas-induced phospholipase D activation.


Subject(s)
Mice , Animals , Antibodies, Monoclonal/immunology , fas Receptor/immunology , Bridged-Ring Compounds/pharmacology , Cell Line , Cross-Linking Reagents , Dose-Response Relationship, Immunologic , Enzyme Activation , Genistein/pharmacology , Hydrolysis , Lymphoma/pathology , Type C Phospholipases/antagonists & inhibitors , Phospholipase D/metabolism , Phosphorylation , Phosphorylcholine/metabolism , Solubility , Thiones/pharmacology , Tumor Cells, Cultured , Tyrosine/metabolism , Water/chemistry
2.
Experimental & Molecular Medicine ; : 303-309, 2001.
Article in English | WPRIM | ID: wpr-144612

ABSTRACT

Both Fas and PMA can activate phospholipase D via activation of protein kinase Cbeta in A20 cells. Phospholipase D activity was increased 4 fold in the presence of Fas and 2.5 fold in the presence of PMA. The possible involvement of tyrosine phosphorylation in Fas-induced activation of phospholipase D was investigated. In five minute after Fas cross-linking, there was a prominent increase in tyrosine phosphorylated proteins, and it was completely inhibited by D609, a specific inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC). A tyrosine kinase inhibitor, genistein, can partially inhibit Fas-induced phospholipase D activation. There were no effects of genistein on Fas-induced activation of PC-PLC and protein kinase C. These results strongly indicate that tyrosine phosphorylation may in part account for the increase in phospholipase D activity by Fas cross-linking and D609 can block not only PC-PLC activity but also tyrosine phosphorylation involved in Fas-induced phospholipase D activation.


Subject(s)
Mice , Animals , Antibodies, Monoclonal/immunology , fas Receptor/immunology , Bridged-Ring Compounds/pharmacology , Cell Line , Cross-Linking Reagents , Dose-Response Relationship, Immunologic , Enzyme Activation , Genistein/pharmacology , Hydrolysis , Lymphoma/pathology , Type C Phospholipases/antagonists & inhibitors , Phospholipase D/metabolism , Phosphorylation , Phosphorylcholine/metabolism , Solubility , Thiones/pharmacology , Tumor Cells, Cultured , Tyrosine/metabolism , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL